行业类型检测服务
服务内容房屋安全检测
检测类型安全质量检测
品牌住建工程
安全质量检测类型可靠性检测
所在地深圳
服务范围全国
现场检测1-2天
严格按照《建筑结构度设计统一标准》、《建筑抗震检测标准》、《危房检测标准》、《建筑结构检测技术标准》、《民用建筑性检测标准》、《建筑工程抗震设防分类标准》、《建筑抗震设计规范》、《防 洪标准》等有关标准规范及规则,进行幼儿园校舍结构性、抗震能力、综合防灾能力等方面的检测。
房屋安全检测机构应当依法开展检测检测活动,承担下列质量义务:在目录认定的范围内承揽检测检测业务。不得允许其他单位、个人以本机构名义承揽检测检测业务,不得检测检测业务。
房屋抗震安全检测检测结构动力检测方法介绍:建筑物建成以后完好状态下量测得到的结构动力特性数据,可作为基本技术档案保存。建筑物一旦遭受地震等自然灾害或使用了一定的年限以后,再进行测量,可以从中获得宝贵的对比资料。比如,房屋结构破坏开裂后或结构内 部有质量问题时,结构的自振周期会加长,振型会改变等,从结构的自身固有特性的变化可以识别建筑物的损伤,为房屋安全检测提供强有力的数据。
(1) 查阅资料:调阅核查竣工图、竣工资料等;对房屋被检测部分建筑结构测绘:在熟悉、掌握已有原有图纸资料的基础上,通过现场全面测绘与复核(基础开挖),建立建筑平面、立面、剖面、典型建筑构造、基础平面、结构平面、典型结构构件截面与节点构造等技术资料,尤其是加建结构与原结构的连接构造及性。
(2) 楼板完损状况检测,裂缝分布检测。
(3) 材料强度检测:结构材性检测的内容与方法主要包括:
混凝土强度——采用回弹法,现场条件具备时采用钻芯法校核。
砌筑砂浆强度——采用贯入法。砖——采用回弹法。
钢筋——采用表面硬度法。
(4) 结构尺寸和配筋复核检测,构件截面尺寸为普查;钢筋采用超声测试、局部开凿相结合的方法,以抽查为主,主要是典型构件钢筋复核,有可能增加荷载的区域为重点检测区域。
(5) 安全性计算:根据现场检测情况,计算楼板安全性是否满足要求。并且增加考虑楼板振动方面的验算。
1、荷载调查:经调查结构使用荷载未超出设计要求;
2、基础检测
基础形式为桩基础承台,基础混凝土强度小值为38.0MPa,达到设计强度C30的127%。
无裂缝、破损现象。基础承台尺寸符合设计;
3、钢柱检测
根据检测结果,钢柱截面尺寸实测值与设计之差符合《热扎H型钢和部分T型钢》(GB/T11263-2005)允许偏差范围。防腐涂层厚度满足《钢结构工程施工质量验收规范》(G205-2001)标准要求;
柱脚焊缝的外观、尺寸满足《钢结构施工工程质量验收规范》(G205-2001)规范要求。预埋板采用8根直径为20mm的螺栓,埋植深度500mm;柱底做钢靴与基础相连。
4、钢梁检测
钢梁截面尺寸实测值与设计之差符合《热扎H型钢和部分T型钢》(GB/T11263-2005)
允许偏差范围;
防腐涂层厚度满足《钢结构工程施工质量验收规范》(G205-2001)规范要求;
角焊缝的外观、尺寸缺陷满足《钢结构工程施工质量验收规范》G205-2001
规范要求;
根据《民用建筑性检测标准》(G292-1999),钢梁挠度限值不超过l0/300,挠度实测值允许范围内。
5、楼板检测
楼板厚度实测值与设计之差符合G204-2002标准允许偏差范围。
6、层高检测、轴线尺寸检测
实测结果与设计之差符合《混凝土结构工程施工质量验收规范》(G204-2002)标准允许范围。
7、钢材材质复核
经检查钢材材质书,立柱、钢梁所用钢材材质为Q235。
结构构件裂缝宽度的测量可选用下列方法:
1 塞尺或裂缝宽度对比卡:用于粗测,精度低。
2 裂缝显微镜:读数精度在0.02mm~0.05mm,系目前裂缝测试的主要方法。
3 裂缝宽度测试仪器,人工读数方式,测试范围:0.05mm~2.00mm;自动判读方式,读测精度0.05mm。
4 对于某些特定裂缝,可使用柔性的纤维镜和刚性的管道镜观察结构的内部状况。
5 当裂缝宽度变化时,宜使用机械检测仪测定,直接读取裂缝宽度。
混凝土结构构件和砌体结构构件裂缝宽度检测精度不应小于0.1mm,测试部位(测位)表面应保持清洁、平整,裂缝内部不应有灰尘或泥浆。
6 结构构件裂缝深度检测部位,宜选取裂缝宽度处;混凝土结构构件裂缝深度可用钻芯法和超声法检测。
7 采用混凝土钻芯法时,可从混凝土钻芯和抽芯孔处测量裂缝深度。
8 采用超声法检测混凝土结构构件裂缝深度时,根据裂缝深度与被测构件厚度的关系以及可测试表面情况,可选择采用单面平测法、双面斜测法、钻孔对测法。
当结构裂缝部位只有一个可测表面,估计的裂缝深度不大于被测构件厚度的一半且不大于500mm时,可采用单面平测法进行裂缝深度检测。2 当结构的裂缝部位具有两个相互平行的测试表面时,可采用双面穿透斜测法进行裂缝深度检测。3 当大体积混凝土的裂缝预测深度在500mm以上时,可采用钻孔对测法进行裂缝深度检测。
根据混凝土结构、砌体结构裂缝的分布、形态和特征,可分别按本规程附录A、附录B判定裂缝所属类型,并初步估裂缝的严重程度。
回弹法,通过回弹仪测定混凝土表面硬度,再结合混凝土的碳化深度继而推断其抗压强度。回弹仪测定的回弹值是混凝土表面的硬度,材料的硬度又跟材料的强度有关,从而建立回弹值跟强度的测强曲线来推断强度值。采用回弹法进行检时,其检测面应为原状混凝土面,并应平整、清洁,不应有疏松层、浮浆、麻面,必要时用砂轮清除疏松层和杂物,且不应有残留的粉末或碎屑
优点:使用简单、灵活,测试速度快和检验费用低,检测人员到现场随机抽取检测,及时掌握混凝土的真实强度及浇筑的整体水平。
缺点:其精度相对较差,需借助一定的测强曲线,当混凝土表面与内部质量有明显差异,如遭受化学腐蚀或火灾,硬化期间遭受冻伤等,则不能用此方法。
房屋安全检测在建筑物遭受火灾后,由于建筑结构构件及材料性能都会有一定的损伤,会导致结构承载能力的降低,因此需要对火灾后的建筑进行灾后检测。
火灾对钢筋混凝土结构的破坏性极大,建筑物一旦经受会在的侵蚀,不仅精美的外观装饰会毁于一旦,而且承重结构的承载力也会减小,导致建筑物的梁、柱等构件强度降低,出现裂缝。故灾后必须通过一定的检测手段,对结构受损程度和安全等级进行正确估,并采取恰当的加固处理措施对建筑物进行加固,保证后续使用过程中的安全。
要准确的把握火灾对建筑物的影响,首先需要了解火灾对混凝土建筑结构的破坏机理。火灾在混凝土结构的破坏机理主要体现在5个方面:
1、混凝土表面近火处温度升高比内部快,外部受热体积明显膨胀,内外温差引起混凝土开裂;
2、混凝土经过高温,内部各种水分迅速汽化,冲破障碍迅速逃逸,导致混凝土强度降低;
3、水泥石受热分解,使胶体的化学结构破坏,粘结力减小,构件出现裂缝、表面发毛、起砂、呈蜂窝状、出现龟裂、边角溃散脱落现象;
4、骨料和水泥石之间的热不相容,水泥石受拉,骨料受压,导致应力集中和微裂缝的开展;
5、大火高温使内部钢筋软化,抗滑能力降低,钢筋和混凝土的咬合力减小。
建筑物发生火灾后应该及时对建筑结构进行检测检测,检测人员应该到现场调查所有过火房间和整体建筑物。对有垮塌危险的结构构件,应首先采取防护措施。建筑结构火灾后的检测程序,可根据结构检测的需要,分为初步检测和详细检测两阶段进行。
http://www.zcgcjc.com