检测类型厂房检测
主要技术依据1建筑结构检测技术标准
主要技术依据2民用建筑可靠性鉴定标准
主要技术依据3房屋质量检测规程
主要技术依据4建筑变形测量规范
主要技术依据5钢结构现场检测技术标准
行业类型检测服务
服务内容房屋安全检测
所在地深圳
服务范围全国
现场检测时间1-2天
出报告时间7-10天
钢筋混凝土结构受力构件、杆件无短缺,无明显变形,没有因切割、打洞等形成的损伤。受力构件、杆件的混凝土无酥裂、腐蚀、烧损、脱落,无露筋,无超过设计规范限值的裂缝。预制受力构件的支承长度符合非抗震设计要求。
钢结构受力构件、杆件包括支撑)无短缺,无明显弯曲,无裂缝,无任意切割所形成的孔洞或缺口。受力构件、杆件及其连接和节点无锈蚀。
调查建筑物历史如原始施工、历次修缮、改造、用途变更、使用条件改变以及受灾等情况。考察现场按资料核对实物调查建筑物实际使用条件和内外环境查看已发现的问题听取有关人员的意见。制定详细调查计划及检测、试 验工作大纲并提出需由委托方完成的准备工作。房屋正常运用性审定该类型房屋审定偏重思索能否影响运用人正常的运用性,比方装饰装修破损、漏水、空鼓等现象等。而查勘中更偏重于对图纸的复核,现场的实践环境。常常产权补登或者改动房屋运用功用等常停止此类型的房屋审定。
承载力检验:
承载力是楼板的承载能力,包括强度、稳定、疲劳等问题,承载力检验用承载力检验系数实测值γ0u表示。每级外加荷载值的计算见公式
Qb1=k(QS-GK)×L0×b (k=0.2,0.4,0.6,0.8,1.0)
Qb2=(kQS-GK)×L0×b (k=1.1,0.95[γcr], [γcr],1.3)
Qb3=(k/Qd -GK)×L0×b (k/=1.15,1.2,1.25,1.30, …)
Qb1 Qb2 —正常使用极限状态检验时外加荷载值(N)
k —正常使用极限状态检验时加载系数
Qb3 —承载力极限状态检验时外加荷载实测值(N)
k/—承载力极限状态检验时加载系数
Qd —承载力极限状态检验设计值(N),包括板的自重,查结构图集中结构性能检验参数表
L0—板的检验跨度,它等于板的标志长度减去0.1(m)
b—板的标志长度(m)
公式(4)是1~5级外加荷载值计算方法,在第5级外加荷载持续半小时后检验跨中挠度实测值a0q;公式(5)是6~9级外加荷载计算方法,在7、8级时观察裂缝;公式(6)是10级以后外加荷载计算方法,每级加载系数k/增加5%,直至观察到检验标志的破坏现象计算出承载力检验系数实测值γu0见公式(7
γu0 = Qb3 /Qd ≥[γu
γu0 —承载力检验系数实测值
[γu] —承载力检验系数允许值,查GB 50240-2002中《承载力检验系数允许值》
房屋裂缝问题:
荷载裂缝:由类荷载直接作用产生的应力所引起的裂缝,称为荷载裂缝。当结构自重、使用荷载等因素超过设计初始设定值时,造成结构承载能力小于荷载作用,导致结构产生裂缝。在由外荷载直接引起结构裂缝的工程,普通钢筋混凝土构件当内力达到30%极限荷载时(混凝土应力达到抗拉强度)便已出现裂缝,裂缝宽度在0.05~0.10mm,这种裂缝对结构的安全度一般没有影响,还可承受70%~80%的极限荷载。所以,混凝土结构允许带裂缝工作,只要在一定程度或规范允许宽度范围内即是安全的。
变形裂缝:由第二类荷载(变形荷载)引起的裂缝。当结构受第二类荷载作用产生变形,变形受到约束得不到伸展时,会引起结构内部产生应力,应力超过一定数值时会引起构件裂缝。在变形作用下,结构的抗力与抗裂性取决于混凝土的抗拉性能,即抗拉强度和抗拉变形。在由变形变化引起裂缝的工程中,超静定结构占多数,由于这类结构的承载能力有较大的安全度,有较好的韧性,能适应较大的变形,有时尽管裂缝较严重,房屋也不至于出现倒塌破坏。据统计,混凝土结构的这种裂缝占全部裂缝的80%以上,其中又以温度、收缩裂缝居多,地基变形裂缝次之。
楼板承重检测案例分享:早期的厂房楼板承重限值通常比较小,无法满足现代工业生产所需的设备放置要求,我院承接的乐依文厂房车间增加设备称重检测项目,位于东莞市长安镇,为地上三层的钢筋混凝土框架结构。该厂房建筑面积约49383㎡,建造于2002年后,已投入使用多年,现由于使用需要拟第三层楼板C区2~5×H~L区域增加设备,为了解楼板承重能力和房屋安全性,委托我院对拟增加设备后进行楼板承重检测,出具房屋安全检测报告。经检测技术人员现场对建筑结构尺寸,配筋,结构布置,基础形式等进行了仔细的勘测,并抽取部份混凝土构件芯样送第三方检测单位试压获取混凝土强度数据,并以计算机建模复核验算楼板承重能力。后根据勘查复核的数据以及规范《工业建筑性检测标准》G144-2008的要求对楼板承重检测进行安全估及拟增加设备建议和处理。
房屋建筑工程的施工安全与施工质量同等重要,所以在房屋建筑的施工过程中要加强施工过程的监督与管理,高度重视施工安全管理。
在房屋建筑的施工质量与安全管理中,监理单位的监督与管理工作是非常重要的。加强对施工过程的全程监理是做好房屋建筑质量与安全管理的重点。首先要提高监理人员的责任意识,使其意识到自身工作的性质与职责,进而更加投入地参与到日常的监理工作中,从而提高施工质量与安全管理工作的效率。此外还要制定合理有效的方案,从而大限度地发挥监理工作的作用,进一步推动房屋质量与安全管理工作的顺利进行。 总之,房屋的重点任务是施工的质量管理以及施工的安全管理。因此,我们必须不断提高质量管理和安全管理意识,严控原材料采购关,加强施工过程的力度等,确保房屋建筑工程的施工质量达标,确保房屋建筑工程满足安全性的要求,终提高建筑企业的信誉度,进而提高其经济效益。检测标准
GB 50223-2008 建筑工程抗震设防分类标准
GB 50009-2012 建筑结构荷载规范
GB 50010-2010 混凝土结构设计规范
GB 50204-2015 混凝土结构工程施工质量验收规范
GB/T 50344-2004 建筑结构检测技术标准
JGJ/T 23-2011 回弹法检测混凝土抗压强度技术规程
JGJ/T 152-2008 混凝土中钢筋检测技术规程
DG/TJ 08-79-2008 房屋质量检测规程
改变结构传力途径加固法
主要可分为两种:
(1)增设支点法:该法是以减小结构的计算跨度和变形,提高其承载力的加固方法。按支承结构的受力性能分为刚性支点和弹性支点两种。刚性支点法是通过支承构件的轴心受压将荷载直接传给基础或其他承重结构的一种加固方法;弹性支点法是以支承结构的受弯或晰架作用来间接传递荷载的一种加固方法。上述方法适用于房屋净空不受限制的大跨度结构的加固。
(2)托梁拔拄法:该法是在不拆或少拆上部结构的情况下拆除、更换、接长柱子的一种加固方法。按其施工方法的不同可分为有支撑托梁拔拄、无支撑托梁拔柱及双托梁反牛腿拔柱等方案,适用于要求厂房使用功能改变,空间的老厂改造的结构加固,其中双托梁反牛腿托梁拔拄,则适用于保留上柱的型钢结构的加固。
建筑结构设计中荷载值相关问题探讨
1.结构设计中的荷载取值
随着我国建筑业的不断发展,建筑体的形态越来越多样,建筑体的构造也越来越复杂。这些都使得建筑体的荷载量越来越大。建筑体荷载值的确定在整个结构设计中非常重要,这将会是**建筑体的抗震性与稳定性的基石。通常建筑荷载值的确定会有一般流程,首先会根据项目的实际情况建立相关的荷载概率模型,在此基础上再来进一步展开参数的研究与分析工作,这样才能够更为准确的确定荷载值。
2.建筑结构荷载的分类
施加在结构上的集中力或者分布力称为荷载。荷载根据时间的长久分为荷载、可变荷载和偶然荷载。荷载是施加在工程结构上不变的(或其变化与平均值相比可以忽略不计的)荷载。如结构自重、外加性的承重、非承重结构构件和建筑装饰构件的重量、土压力等。
恒载在结构的设计中必须考虑其长期效应,因为在建筑体的整个使用期内它是持续施加于结构之上的。可变荷载是施加在结构上的由人群、物料和交通工具引起的使用或占用荷载和自然产生的自然荷载。可变荷载的随机性表现在空间的变异方面,变化和平均值难以忽略,包括建筑上的活动人群、自然界的风、雨、雪荷载等。偶然荷载有可能出现的荷载,而且一旦出现,量值较大,包括地震、汽车撞击作用等持续很短的荷载等。
3.荷载值确定的重要性
在建筑结构设计中荷载值的确定非常重要,这不仅是结构设计中的一项基础工作,也能够直接决定建筑体的安全性与稳定性。荷载值的准确确定将能够明确整个建筑体的结构内力,在此基础上才能够进一步展开相关的结构计算。如果无法明确建筑体的荷载值,或者是对于荷载值的确定有偏差,这很容易造成建筑体的结构形变,会使得建筑体的寿命降低,甚至产生安全事故。因此,合理确定建筑体的荷载值非常重要。
工程概况
泉州某单层排架厂房建于1988年,原设计为四跨排架结构,现状为三跨,柱下钢筋混凝土条形杯口基础。排架柱为单阶变截面钢筋混凝土柱,下柱采用工字形截面,上柱为矩形截面,距离基础面6.25m位置处设置有吊车梁牛腿;每跨( 1-10)轴排架柱牛腿上均安放有装配式钢筋混凝土简支吊车梁,现状吊车均已拆除不再使用;屋架为钢筋混凝土组合式屋架,屋架上弦为矩形截面钢筋混凝土梁,下弦杆采用等边单角钢,腹杆体系采用钢筋混凝土、等边单角钢;每跨( 2-9)轴跨中位置均在屋架上弦梁处设置钢天窗架,钢天窗架采用三铰刚架结构;屋架及钢天窗架上均铺设钢筋混凝土大型预制屋面板。
该厂房平面布置为矩形,总长度为54.0m,总宽度约为45.0m,现状建筑面积约为2500 m2。( 2-9 )轴柱间距为5.4m,( 1-2)轴及( 9-10)轴柱间距均为6.0m,屋架跨度均为15.0m。厂房四周均砌筑有与排架柱齐高的240mm厚实心砖墙,四周砖墙沿高度方向等距离( 2.85m)设置有三道圈梁,排架柱和抗风柱均预埋拉结钢筋伸入四周圈梁及砖墙。排架柱、屋架、钢天窗架及屋面板布置见(图1,图3)。
2现场检测
2.1首先对该厂房的建筑及结构现状进行全面检查,对结构体系、传力途径、构件属性进行识别。
2.2量测结构各构件的截面尺寸,检查各构件间连接节点的做法,对基础进行局部开挖检查。
2.3现场在该厂房抽检部分排架柱及屋架上弦梁混凝土构件,采用回弹法检测构件混凝土抗压强度。
2.4扫描排架柱钢筋分布及钢筋直径,并现场实际确认排架柱的主筋和箍筋级别分别为钢5、钢3。
3、承载力验算
本次采用建筑科学研究院编制的PKPM( 2010版)系列软件按框排架结构对该厂房排架柱进行承载力验算。该厂房( 3-8)轴为主要横向平面排架结构,抽取其中一榀排架作为计算单元进行建模计算。
3.1该排架结构为铰接排架。建模时,依据现场实际检查,屋架两端与排架柱柱顶连接按铰接节点考虑,排架柱与基础连接按固端考虑。屋架及钢天窗架各杆件按柱构件布置,各连接节点按铰接考虑。
3.2排架柱的计算长度取值。
3.2.1垂直排架方向:边柱( A轴和D轴排架柱)沿高度方向三等分位置与圈梁连接,其计算长度均取为H/3 = 8.55 /3m =2.85m( H为从基础顶面算起的排架柱全高) ;依据《混凝土结构设计规范》( G010-2010)第6.2.20条第1款规定,垂直
3.2.2排架方向:依据《混凝土结构设计规范》( G010-2010)第6.2.20条第1款规定,排架方向,上柱计算长度按2.0 Hu = 2.0×2.3m = 4.6m取值,下柱计算长度均按1.0 Hl = 1.0×6.25m =6.25m取值。
3.3恒活荷载输入。
3.3.1横荷载:查阅《全国常用标准图实物工程量手册》得该厂房主要的钢筋混凝土预制屋面板单块重量为13.24kN,在屋架上弦梁和钢天窗架上弦按线荷载布置为13.24 kN /1.5m = 9.0kN/m(主要的预制屋面板平面尺寸为6.0m×1.5m)。单根钢筋混凝土吊车梁重量为25 kN,按节点荷载在边柱牛腿位置处布置为25 kN,在中柱牛腿位置处布置为50kN(本次计算不考虑吊车荷载)。
3.3.2活荷载:该厂房屋面为不上人屋面,不上人屋面活荷载取0.5 kN/m2,( 2-9)轴柱距为6m,在屋架上弦梁和钢天窗架上弦按线荷载布置为0.5 kN/m2×6m = 3.0 kN/m。
对房屋裂缝的检测需要查明裂缝的各类参数。在进屋结构安全检测的过程中,应明确房屋的结构性裂缝不仅对房屋的表面结构受力状况造成影响,更对房屋结构的使用寿命产生威胁。通常情况下,房屋结构的裂缝宽度越大,隐藏在混凝土内部的钢结构越容易受到腐蚀和锈化,其砌体结构更容易发生倾斜或倒塌,严重影响房屋的安全。若裂缝是横向发展的,则会在影响房屋的美观程度上占据较大比例,若裂缝是纵向发展的,则该裂缝在影响墙体美观性的同时,还对墙体的使用性能造成影响。众所周知,房屋的墙体由钢筋混凝土结构制成,其使用性能为遮风避雨。钢筋混凝土结构完好无损时,能对风雨起到较好的遮蔽功能。若钢筋混凝土结构出现破损情况,则会影响房屋的使用性能。
http://www.zcgcjc.com